# DTC and HMT collaborations

#### Barbara Brown

With many contributions from HMT and DTC staff at NCAR and NOAA/ESRL (PSD and GSD)



28 April 2009



### **Motivation**

- DTC and HMT (and other testbeds) share many common goals and interests
  - Accelerating transition of research to operations
  - Model testing and evaluation
  - Verification
  - Observations
- Expertise at HMT and DTC are complementary
  - Hydrometeorology; ensemble prediction
  - Testing and evaluation; verification
- Collaboration will enhance the success of both testbeds

### **HMT/DTC** collaboration: Goals

### Four areas:

- 1. Implementation and demonstration of verification capabilities
- High-resolution ensemble prediction capabilities at DTC
- 3. Data impact studies
- 4. Impacts of model physics and parameterizations

### **HMT/DTC** collaboration: Goals

### Four areas:

- 1. Implementation and demonstration of verification capabilities
- High-resolution ensemble prediction capabilities at DTC
- 3. Data impact studies
- 4. Impacts of model physics and parameterizations

(initial focus areas)

### **Area 1: Verification**

- Implement current capabilities (MET and HMT)
- Extend capabilities to meet
  DTC and HMT needs
- Demonstration for HMT
  West in winter 2009-2010
- Extend capabilities to Southeast in future years





# **Current verification capabilities**

- MET (Model Evaluation Tools)
  - Spatial methods
  - Traditional methods
- Event-based verification concepts in HMT
  - Evaluate forecasting capabilities for important (extreme) events in regions (e.g., RFCs)
- Snow-level verification in HMT

#### Example: MODE application





### **Verification needs**

- HMT
  - Precipitation
  - Snow level
  - Atmospheric rivers
- DTC
  - Ensemble methods
  - Observation uncertainty



GOES 6.8 m channel (K); 06 UTC 7 Nov 06 From Neiman et al. 2008

### **Precipitation verification**

- HMT event-based verification using traditional measures (POD, FAR, Bias, CSI)
  - Extreme events defined by region
  - MET implementation: Examine sub-regions (e.g., based on terrain or river basins)
- Application of spatial verification methods
  - Precipitation
  - Atmospheric rivers?





From Ralph et al. 2006

### **Ensemble verification**

- Implementation of basic methods
- Efficient methods for applying MET to ensembles
- Spatial methods applied to ensembles
  - Example: MODE applied to ensembles of precipitation objects





Fig from C. Davis

# impacts of obs uncertainty on verification

- Observations are subject to errors (biases, representativeness, instrument, precision, etc.)
- Analyses combine information in different ways
  - And they incorporate various kinds of errors (obs, boundary, interpolation) that may not be accounted for
- What is the impact of this uncertainty on verification scores? How should this uncertainty be represented in verification?

# Obs uncertainty leads to under-estimation of forecast performance



850 mb Wind speed forecasts

Assumed error = 1.6 ms<sup>-1</sup>

From Bowler 2008 (Met. Apps)

# **Observation uncertainty**





**Provisional Data Subject to Revision** 

### Obs uncertainty: Adjacent gages...



From GSD DDRF Project Seminar March 27, 2008

Similar uncertainties exist with other types of measurements – such as radar, satellite, multi-sensor analyses

### Impacts of obs uncertainty and variability



6h Precipitation Ending 0000 UTC 31 December 2005

# impacts of obs uncertainty on verification

- Allow efficient application of multiple analyses
  - Comparison of verification results
  - Comparison of analyses
- Investigate impacts of observation variability and uncertainty on verification results
- Goal: Methods to incorporate obs uncertainty (as we currently incorporate sampling uncertainty)



Trying to find the "truth"...

# Area 2: Ensemble forecasting

- DTC goal:
  - Develop capability in ensemble forecasting
  - But What does that mean?
    - Post-processing and bias correction tools?
    - Generation of ensembles?
    - Testing and evaluation framework?
    - Other?





COM\_US SLP(MB) 00H fast from 09Z 26 apr 2009 mean is in contour and color represents spread in mb verified time: 09z, 04/26/2009



# **Area 2: Ensemble forecasting**

### Initial DTC/HMT collaboration

- Establish working group
- Workshop on community needs
  - Focus on high-res hydrometeorological forecasts
  - Include ensemble experts, operational centers
  - Identify goals and steps to taken
- Implement initial steps





### **Area 3: Data impact studies**

### Long-term goal:

Investigate impacts of new and existing observations on NWP predictions of high-impact weather

- Make use of HMT highdensity and new observations
  - Ex: Ground-based GPS water vapor, Space-based radio occultation data impacts on QPF
- Focus on HMT high-impact weather categories
- Impacts on prediction and verification

#### **GPS** Met sites



From S. Gutman



#### **BAMEX Data Assimilation**



# Comparison of QPF bias for forecasts with ("non-local") and without ("control") COSMIC data

\* Numerical values represent difference between the two forecasts in inches, normalized by the total observed precipitation at that site. It is expressed as a percentage.

\*Color fill represents which forecast had smallest bias:

-green: COSMIC data improved the forecast

-red: Control run without COSMIC is still best

-yellow: Differences were minor

\*\*\*The COSMIC data improved the QPF at sites where the heaviest rain fell.

NOLOCAL performs better than LOCAL.



### **Data impact studies**

### Initial steps:

- Establish HMT/DTC focus group
- Outline initial goals and scope of testing activity
  - Will include software packages DTC supports to the community (GSI, WPS, WRF, WPP, and MET)

# Area 4: Impacts of model physics and parameterizations

### Long-term goal:

Investigate impacts of model parameterizations and physics packages on WRF model predictions of hydrometeorological variables in HMT focus regions

Make use of HMT regular and special observations

### <u>Initial steps</u>:

- Form an HMT/DTC focus group to carefully define testing activities
- Identify specific DTC testing activities

### **HMT/DTC Collaboration - Summary**

- DTC and HMT have many common interests, and capabilities that can be beneficial to both
  - Exciting opportunities for progress in several areas
- Collaboration will focus initially on
  - Verification implementation and demonstration of verification capabilities
  - Development of DTC capabilities in ensemble forecasting
- Later activities will include
  - Data impact studies
  - Investigating impacts of model physics and parameterizations
- Many of these topics and interests cross over to other testbeds – many additional opportunities for collaboration